0%

基本积分表

zy2022

高等数学

基本积分表

公式题目
$\int x^kdx=\dfrac{1}{k+1}x^{k+1}+C,k\neq-1$
$\int \dfrac{1}{x^2}dx=-\dfrac{1}{x}+C$
$\int \dfrac{1}{\sqrt{x}}dx=2\sqrt{x}+C$
$\int \dfrac{1}{x}dx=ln\lvert x\rvert+C$
$\int e^xdx=e^x+C$
$\int a^xdx=\dfrac{a^x}{ln a}+C,(a >0 \text{且} a \neq 1)$
$\int e^xdx=e^x+C$
$\int sinxdx=-cosx+C$
$\int cos xdx=sin x+C$
$\int tan xdx=-ln\lvert cos x \rvert+C$
$\int cot xdx=ln\lvert sin x \rvert+C$
$\int\dfrac{dx}{cosx}=\int secxdx=ln\lvert secx+tanx \rvert+C$1
$\int\dfrac{dx}{sinx}=\int cscxdx=ln\lvert cscx-cotx \rvert+C$
$\int sec^2xdx=tanx+C$
$\int csc^2xdx=-cotx+C$
$\int secxtanxdx=secx+C$
$\int cscxcotxdx=-cscx+C$
$\int \dfrac{1}{1+x^2}dx=arctanx+C$
$\int \dfrac{1}{a^2+x^2}dx=\dfrac{1}{a}arctan\dfrac{x}{a}+C$
$\int\dfrac{1}{\sqrt{1-x^2}}dx=arcsinx+C$
$\int\dfrac{1}{\sqrt{a^2-x^2}}dx=arcsin\dfrac{x}{a}+C$
$\int\dfrac{1}{\sqrt{x^2+a^2}}dx=ln(x+\sqrt{x^2+a^2})+C(\text{常见}a=1)$
$\int\dfrac{1}{\sqrt{x^2-a^2}}dx=ln\lvert x+\sqrt{x^2-a^2} \rvert+C(\lvert x\rvert>\lvert a \rvert)$
$\int\dfrac{1}{x^2-a^2}dx=\dfrac{1}{2a}ln\lvert \dfrac{x-a}{x+a} \rvert+C(\int \dfrac{1}{a^2-x^2}dx=\dfrac{1}{2a}ln \lvert \dfrac{x+a}{x-a} \rvert +C)$
$\int\sqrt{a^2-x^2}dx=\dfrac{a^2}{2}arcsin\dfrac{x}{a}+\dfrac{x}{2}\sqrt{a^2-x^2}+C$
$\int sin^2xdx=\dfrac{x}{2}-\dfrac{sin 2x}{4}+C(sin^2x=\dfrac{1-cos2x}{2})$
$\int cos^2xdx=\dfrac{x}{2}+\dfrac{sin 2x}{4}+C(cos^2x=\dfrac{1+cos2x}{2})$
$\int tan^2xdx=tanx-x+C(tan^2x=sec^2x-1)$
$\int cot^2xdx=-cotx-x+C(cot^2x=csc^2x-1)$

华里士公式(点火公式)